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A generalization of the Harten TVD-scheme in the form of a predictor-corrector-type scheme of second-order 
accuracy in time and space is proposed for the flows with spherical and cylindrical symmetry. The scheme 
does not require introducing components with artificial viscosity and describes discontinuities in the solution 
without the appearance of nonphysical oscillations for a Courant number less than 0.8. 

Harten 

The concept of a TVD-scheme (a scheme with a reduction in the total variation) has been introduced by 

[1 ]. It can be shown that for the scalar conservation law 

the total variation 

OU___U -4- OF (U) = 0 (1) 
Ot Ox 

aU i dx TV = S ax I (2) 

is conserved if the solution is smooth, and decreases when discontinuities are present. According to this, a scheme 

has the TVD property if numerical analog of (2) 

TV = Y, [U J+l - -  UJl (3) 

does not increase at each step. It is evident that this property provides not only scheme stability, but prevents 

development of nonphysical numerical oscillations. 

For gas dynamics equations, U and F are vectors: U = v , F = v 2 . In this case the total variation 

L e J [(e + p)vJ 
for a system of nonlinear conservation laws (1), generally speaking, can also increase, for example, during interaction 

between shock waves. Therefore there are no reasons to call for always satisfying the TVD condition in the scheme. 

The generalization of the scalar TVD-schemes to the case of systems of nonlinear hyperbolic equations is performed 

via the expansion of Uj+I-Uj in eigenvectors of the matrix 0F/0U and the use of the scalar TVD-scheme for each 

expansion component, which is a variant of solving the linearized Riemann problem [2 ]. Here the TVD condition 

and, along with it, the absence of oscillations occur when calculating noninteracting waves. For interacting waves, 

good quality of the solution is in no way theoretically substantiated but is verified by a large number of computations. 

Having restricted ourselves to consideration of explicit schemes, we may say that the calculation of the change in the 

quantity U at each step in time is performed using flows defined at the boundaries of the cells by the formula 

Fi+l/2 = ~ (Fj + Fj+I + Ri+l/2q)i+l/2 ). (4) 
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Here Rj+I/2 is the matrix of eigenvectors of 0F/0U,  which is determined from any symmetric average of Uj+I and 

Uj. Various expressions for the vector (Pj+ 1/2 are given in [3, 4 ]. The  first two components in (4) correspond to the 

usual scheme in central differences of first order in t and second order in x, whereas the last component provides 

second order  in time and numerical dissipation, suppressing the nonphysical oscillations typical of traditional 

central-difference schemes. 

Direct generalization of (4) to spherical or cylindrical geometries of the problem is impossible, because in 

this case the gas dynamics equations 

_ _  ' 0 1 0 O p  1 0 (r xpv)=O, T(PV)-~  r~ �9 z p v  2 ) - k - - = O ,  O__~p + r ~ _ _  
Ot Or Or Or 

Oe 1 0 [r x v (e q- p)] = O, 
Ot § r ~ Or 

( + r e 

0 - plane layer  
~,---- 1 - cylinder 

2 - sphere 

(5) 

are not of the form of Eq. (1). Therefore,  we should interpolate separately the pressure and convective flows at the 

cell boundaries. Furthermore,  the TVD principle itself is not applicable here, generally speaking, even to individual 

waves, since a shock wave, converging to the symmetry center, is enhanced without bound [6, 7 ]. Because of this, 

to develop a scheme retaining the good qualities of plane TVD-schemes, we used a simple heuristical method that 

reduces to the following. It is known that traditional central-difference schemes describe well the flow everywhere, 

except the discontinuity region, and therefore, if to such a scheme we add numerical dissipation, typical of a plane 

TVD-scheme,  then it is more or less obvious that this scheme will take on the good qualities of TVD-scheme if the 

discontinuity is located sufficiently far from the center. In the opposite case (say, during reflection of a converging 

shock wave) we can and must verify the efficiency of such a scheme by a numerical experiment.  As the base scheme 

we used a predictor-corrector- type scheme: 
At 

A p  j = ~ [ ( S P v ) i -  ~ /2 - -  (Spy) :+  1/21, 
AV~ 

AI (P i - -1 /2 - -P i+ l /2 ) ,  At [(SPot)~-1/2 --(Spot):+1~=] + Ar~ 
, A (pv)j = AV---'~ ~ <6) 

Ae~ . At [(Sv(e-~-p))i_l/~ + (Sv(e--k P))i+L/2], Si+1/2 = ri+l/2, 
" AVj  

hrj  ri+x/2--ri_b2, AVj 1 . ~+~ .r~+~ -= - -  - -  ~ r i + ~ / ~ -  i - ~ / ~ h  ~ + 1  
In formulas (6) the index j refers to the middle of a cell, and the indices j-+1/2 to its boundaries.  The 

values of pv, pv 2, v(e + p), p at the cell boundaries are obtained by means of linear interpolation of these values 

at the centers of the cells. Computations by formulas (6) are performed twice, namely,  once with a half step in 

time and the second time with the full step. Thereafter ,  numerical dissipation that corresponds to the TVD-scheme 

developed previously in [1 ] and modified in [3, 5 ] is added. For this purpose we calculate the flows by the formulas 

:i§ ~ 1 Ri+I/~0:§ 
2 

, 1+o, tDi+i/2 ---- Ari+i/2 ~?( i+l:2)(g]+1 --F g~)- t t t (ai+i/2 -{- ~i+~/2) ~,j+~/2 , 

Art+ l~ 2 = r i + l  - -  r j ,  ~ (Z)  ---- / Izl IZl ~ 6, 
((z" + 8")/28 IZl < 8, 

(7) 

where a t is an eigenvalue of 0F /0U,  ct]+ 1,,2 a re  elements of R~-I1/2(Uj+I - Uj ) /Ar j+I /2 ,  while the values 
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Fig. 1. Dependence of gas parameters on the radius for a converging shock 

wave (a - dens i ty ;  b - en t ropy ,  s = log(p/pT)):  I) t = 2 .53 .10-2;  2) 
3.23- 10-2; 3) 3.29.10 -2. 

t 1 z t t t ,,at ., f (g i+l  - -  cot+i/2 
"~]+1/2 T l p  I'lZJ+l/2] ( l ( 8 )  = CO gi)#zi+,/~ =/= O, 

czi+i/2 = O, 

g~ minmod (o:~-1/2, , -~ ~zi+ t/2), (9) 
I gi I max [0, min (2 t l I~zi+l/21, rain (Icc~+ t/21, l = 2 la i_ t /2)] ,  

I =  t sgn (OCi+I/2). (9a) 

The minmod function is equal to the least-in-magnitude argument, if all the arguments are of the same 

sign, or to zero, if the arguments are different in sign. Formula (9) may be used successfully in the calculations of 

~ l  for all eigenvalues. In [3 ] it is indicated that if we apply (9) to the eigenvalues v_+c, and (9a) to the eigenvalue 

v, then we may obtain the best description of the contact discontinuity. Our calculations verify this conclusion for 

spherical and cylindrical problems. However it should be borne in mind that, according to [3 ], the application of 

(9a) can lead in certain situations to scheme instability. The change of the gasdynamic parameters because of 

numerical dissipation is equal to 

AUj -- A__j_t [(Shf+l/2 - -  (S l ) i - , /d .  <10) 
AV 

Let us consider in more detail the eigenvalues of the matrix 

0 1 0 1 oF = z_.o,5(2_k)o ~ (2--k)o k , 

OU [ ( % + 0 , 5 k v 2 - - H ) v  H - - k v  2 (1 + k ) v  

(11) 

where the following notation is introduced [4 ]: Z = (Op/Op)pe, k = ( O p / O p e ) p ,  H = (e + p ) / p .  Note that for an ideal 

gas Z = 0, k = y  - 1. The velocity of sound c 2 = Z + k ( H  - v 2 / 2 ) . .  The eigenvalues of matrix (11) are a 1 = v - c, 
a 2 = v, a 3 = v + c. The corresponding matrix of the eigenvectors equals 

and its inverse matrix is 

I 1 1 1 1 
R =  v - - c  v v + c  , (12) 

H - - v c  v = 1 2 - - x l k  H + v c  

1 0 , 5 ( b ~ + v / c )  - - 0 , 5 ( v b : + l / c )  b212] 
1 bl vb 2 | ,  ~b2  

[0 ,5 (bz - -v /c )  - - 0 , 5 ( v b 2 - -  1/c) b2/2 J (13) 
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Fig. 2. Gas  parameters  at the initial decay stage of a spherical discontinuity, 

i.e., format ion  of a backward shock wave (a - density; b - pressure;  c - 

velocity): I) t = 8 .63 .10-3;  2) 1.69.10 -2  , 3) 2.50 .10 -2  . 

where bl = (kv2/2  + Z ) / C  2, b2 = k / c  2. 

Since the proposed calculation scheme (6)-(10) is the least substant ia ted when a shock wave is located near  

the symmet ry  center,  we consider the results of simulating convergence of a shock wave to the center in a spherical 

volume with an impermeable  wall at the radius R = 1, filled by an ideal gas with 7 = 1.4. At the initial instant  a 

s tagnant  gas has a homogeneous density over the volume equal to 1, the pressure in the interior part  of the sphere 

r < 0.75 is equal to 1, and  in the section from r = 0.75 to the wall it equals 500. As a result of discontinuity decay 

and subsequent  interaction between the rarefaction wave and the wall, a gaseous cluster is produced which moves 

to the sphere  center.  At the front of the cluster the gas is compressed sixfold in the shock wave,and then fur ther  

compression of the gas caused by the spherical geometry occurs. The  gaseous cluster is separated from the originally 

heated gas by a contact discontinuity. Figure la  shows that for the time instant t = 0.025 the max imum compression 

reaches 10 and is located considerably far ther  from the sphere center than the shock-wave front,  which is easily 

identified in Fig. lb.  As the shock wave moves forward, it is enhanced and the growth in entropy to the sphere 

center is responsible for this. For a converging shock wave there exists a self-similar solution (valid in the vicinity 

of the sphere  center) which is substantial ly independent  of the initial conditions [6, 7 ]. In particular,  the max imum 

compression for an ideal gas with 7 = 1.4 is equal to 20.1 before focusing of the shock wave at the center  and reaches 

145 after  reflection of the shock wave. The  time instant  t = 0.0323 in Fig. 1 precedes the focusing, while at t = 

0.0329 the densi ty at the center  reaches its greatest  magnitude.  The  gas density agrees doubly well with the 

self-similar solution. 

In the second case considered a heated gas with pressure equal to 500 was si tuated in a sphere  with r 

< 0.25, while outside this sphere the pressure was equal to 1. The  gas density over the whole space was equal to 

1. The  problem was solved in a sphere  of radius R -- 2. Because of discontinuity decay ra ther  complicated motion 
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Fig. 3. Gas parameters during decay of a spherical discontinuity (a - densityl; 

b - pressure; c - velocity): 1) t = 3.36 �9 10-2; 2) 5 .93.10-2;  3) 8 .6 .10-2;  4) 

3.63.10 -1 . 

arises. The shock wave formed carries away gas situated in the vicinity of the original pressure drop and leaves 

behind a quite rarefied space, to where gas located in the vicinity of the sphere center begins to flow out. The 

outflow velocity is found to be higher than the gas velocity behind the shock wave front. The interaction between 

these two flows eventually leads to the formation of another  shock wave, which propagates to the sphere center. 

Figure 2 illustrates all stages of this process. After reflection from the center the shock wave first propagates over 

the rarefied hot gas (in Fig. 3a, b t = 0.0336 corresponds to this) and then collides with the contact discontinuity 

(t = 0.0593). As a result of the interaction with the contact discontinuity the wave is split: one part is reflected 

backward to the center,  while the other overtakes the head shock wave (t = 0.086). Subsequently, the wave is 

repeatedly reflected successively from the center and from the contact discontinuity, gradually losing its energy 

and acquiring the character  of a smooth long-wave oscillation. At t = 0.363, four wave reflections from the center 

had occurred. Here,  the disturbance from the first reflection has already merged with the head shock wave, the 

next  two reflections are sufficiently well seen on graphs of the pressure and velocity, and the last one is already 

virtually imperceptible. 

All calculations were performed on a uniform grid over the radius, consisting of 200 cells. The  Courant  

number was equal to 0.5, i.e., the step in time was determined from the relation At = 0.5 min ( A r / ( c +  Iv l)). Trial 

computations allow us to assume that the critical Courant number  for the proposed method is approximately equal 

to 0.8. In the calculations we used formula (9) for the eigenvalues v_+c and (9a) for the eigenvalue v. To perform 

calculations by formulas (11)-(13),  it is necessary to average v, H, k, and Z over two adjacent cells. The  last two 

quantities are constants for an ideal gas, whereas for the first two it is recommended in the li terature to use Roe 

averaging [2]. Our computations have shown that this technique gives no advantages in comparison with the 
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simplest averaging Vj+l/2 = ( v j - 1  - t - v j ) / 2  and  Hj+la = ( H j - 1  -t- Hj)/2 that we have used. The quantity 6 in 

formulas (7) was assumed to be equal to zero. 

N O T A T I O N  

U, density of a conserved quantity (density, momentum, energy); F, flow; t, time; x, coordinate;p, density; 
v, velocity; e, energy density; p, pressure; R, matrix of eigenvectors; ~ ,  flow expansion in terms of eigenvectors; 
2, curvature index; r, radius; e, specific internal energy; At, step in time; AV, cell volume; S, area; Ar, size of a 

cell over the radius; f, flow through a cell boundary; H, enthalpy; c, velocity of sound; s, entropy; a, b, a, g, 7, Z, 

k, coefficients in equations. 
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